精確度遠(yuǎn)超現(xiàn)有技術(shù) 下一代光學(xué)原子鐘可探測引力波
英國《自然》雜志29日在線發(fā)表的一項(xiàng)物理學(xué)研究指出,下一代光學(xué)原子鐘已經(jīng)能比現(xiàn)有方法更精確地測量地球表面時空的引力扭曲。這一成果可用于探測引力波、檢測廣義相對論以及尋找暗物質(zhì)。
時間的流逝并非絕對,而是取決于給定的參照標(biāo)準(zhǔn)。因此,時鐘的測量很容易受到相對速度、加速度和重力勢的影響。重力勢增加會導(dǎo)致山頂?shù)溺姳鹊孛娴溺娮叩酶臁榱藢σ鲋胁煌恢玫溺娺M(jìn)行比對,就需要一個共同的參照面。
地球上的參照面為大地水準(zhǔn)面,大地水準(zhǔn)面是與全球平均海水面重合的等勢面,目前由全球衛(wèi)星定位系統(tǒng)和一個計(jì)入重力的大地水準(zhǔn)面模型的高程測量確定。兩者當(dāng)前均有幾厘米的不確定度,而使用原子鐘,就可以降低這種不確定度。
此次,美國國家標(biāo)準(zhǔn)與技術(shù)研究院(NIST)科學(xué)家威廉姆·麥克盧及其同事,根據(jù)三個基準(zhǔn)表征了兩個鐿原子光晶格鐘。科學(xué)家們報告稱,以鐘頻為單位,系統(tǒng)不確定度為1.4×10-18,測量不穩(wěn)定度為3.2×10-19,并能通過反復(fù)本地頻率比對,達(dá)到不同鐘頻差為10-19量級的再現(xiàn)性。如此高的精確度,已經(jīng)可以確保大地水準(zhǔn)面測定的不確定度小于1厘米,遠(yuǎn)超過現(xiàn)有技術(shù)。
研究人員表示,原子鐘是基于特定原子躍遷在光頻波段的測量。下一代原子鐘對引力的相對論效應(yīng)非常靈敏,甚至可以用作引力位探測器。
在2016年,NIST的物理學(xué)家曾利用鐿原子鐘創(chuàng)造了原子鐘穩(wěn)定性的世界紀(jì)錄。鐿原子鐘需要鐿原子冷卻,然后將其封閉到由激光制成的光晶格“容器”中,每秒“滴答”至少數(shù)百萬億次的光晶格會引發(fā)這些原子在兩個能量級之間“擺動”,最終制成了超級穩(wěn)定的原子鐘。
責(zé)任編輯:孫知兵
免責(zé)聲明:本文僅代表作者個人觀點(diǎn),與太平洋財(cái)富網(wǎng)無關(guān)。其原創(chuàng)性以及文中陳述文字和內(nèi)容未經(jīng)本站證實(shí),對本文以及其中全部或者部分內(nèi)容、文字的真實(shí)性、完整性、及時性本站不作任何保證或承諾,請讀者僅作參考,并請自行核實(shí)相關(guān)內(nèi)容。
如有問題,請聯(lián)系我們!